Asymmetric price adjustment in the small*

Daniel Levya,c,†, Haipeng (Allan) Chenb, Sourav Rayc, Mark Bergend

aDepartment of Economics, Bar-Ilan University, Ramat-Gan 52900, Israel
bMays Business School, Texas A\&M University, College Station, TX 77843, USA
cDeGroote School of Business, McMaster University, Hamilton, ON L8S-4M4, Canada
dCarlson School of Management, University of Minnesota, Minneapolis, MN 55455, USA

Abstract: Analyses of a large retail scanner price dataset reveal a new and surprising regularity—small price increases occur more frequently than small price decreases for price changes of up to 10¢. Furthermore, it turns out that inflation can explain some of the asymmetry. Inflation, however, offers a partial explanation because substantial proportion of the asymmetry remains unexplained, even after accounting for the inflation. For example, the asymmetry holds also after excluding inflationary periods from the data, and even for products whose price had not increased. The findings hold for different aggregate and disaggregate measures of inflation and also after allowing for lagged price adjustments.

JEL Codes: E31; D11; D21; D80; L11; L16; M31

Keywords: Asymmetric price adjustment; Price rigidity; Inflation; Rational inattention; Monetary policy

* We are grateful to the anonymous referee and the editor Robert King for constructive comments and suggestions. In addition, we thank the participants and especially the discussants, Stephen Cecchetti at the November 2004 NBER Macroeconomic Program meeting and Judith Chevalier at the January 2002 North American Meeting of the Econometric Society, for useful and constructive comments. We are grateful also to Gershon Alperovich, Ignazio Angeloni, Larry Ball, Bob Barsky, Susanto Basu, David Bell, Martin Eichenbaum, Ben Friedman, Xavier Gabaix, Vitor Gaspar, Wolter Hassink, Miles Kimball, Anil Kashyap, Saul Lach, John Leahy, Dongwon Lee, Andy Levin, Igal Milchtaich, Benoît Mojon, Monika Piazzesi, Akshay Rao, Ricardo Reis, Christina Romer, David Romer, Stephanie Rosenkranz, Avichai Snir, Bent Sorensen, Dani Tsiddon, Alex Wolman, Andy Young, and Tao Zha for comments and suggestions. In addition we would like to thank the participants at the June 2007 conference on “Phillips Curve and Natural Rate Hypothesis” in the Kiel Institute for the World Economy, the May 2006 Second Statistical Challenges in E-Commerce Research Symposium at the University of Minnesota, the January 2005 Tel-Aviv University Conference in Memory of Oved Yosha, the August 2005 World Congress of the Econometric Society at University College London, the November 2005 Workshop on Modeling Pricing Behavior in Macroeconomic Models at the Federal Reserve Bank of Richmond, the December 2005 Second International Meeting on Experimental and Behavioral Economics at the University of Valencia, the June 2004 T.C. Koopmans’ First International Conference on “The Economics of Pricing” at Utrecht University, the June 2002 Marketing Science Conference at the University of Alberta, and the June 2001 Midwest Marketing Conference at the University of Michigan, as well as the seminar participants at Bar-Ilan University, Ben-Gurion University, European Central Bank, and the University of Minnesota for comments, suggestions, and advice, and Chetan Agarwal, Manish Aggarwal, Ning Liu, Sandeep Mangaraj, and Rishi Modh for excellent research assistance. Daniel Levy gratefully acknowledges the financial support from the Adar Foundation of the Economics Department at Bar-Ilan University. We rotate co-authorship. All errors are ours.

† Corresponding author: Department of Economics, Bar-Ilan University, Ramat-Gan 52900, Israel.
Tel.: +972-3-531-8331; fax: +972-3-738-4034.
Email address: Levyda@mail.biu.ac.il. Homepage: http://faculty.biu.ac.il/~levyda/profile.htm (D. Levy).
1. Introduction

A longstanding question in the price adjustment literature is whether or not prices adjust asymmetrically (Ball and Mankiw 1994, Carlton 1986, and Mankiw and Romer 1991). Although economists have devoted considerable attention to this issue (recent studies include Davis and Hamilton 2004, Rotemberg 2005, and Peltzman 2000), the link between asymmetry and the size of price changes has not received much attention.¹

This paper studies retail price data from a large US supermarket chain and offers evidence on a new and unusual type of asymmetric price adjustment. The dataset itself is quite large containing about 100 million weekly price observations for 18,037 products. The analysis of the data reveals a surprising regularity—small price increases are more frequent than small price decreases for price changes of up to about 10 cents.

Furthermore, it turns out that inflation can explain some of the asymmetry. Inflation, however, fails to explain it fully. For example, the asymmetry is present even if one considers only a deflation-period sample, or if one focuses only on the products whose prices have not increased. The findings are robust across different measures of inflation (aggregate and disaggregate), and to lagged price adjustments.

The paper is organized as follows. Next section describes the data. Section 3 discusses the findings. Section 4 addresses robustness. Section 5 offers possible explanations. Section 6 concludes.

2. Data

The study uses scanner price data from Dominick’s—a large supermarket chain in

¹ Asymmetric price adjustment has been studied for gasoline (e.g., Davis and Hamilton, 2004), fruit and vegetables (e.g., Ward, 1982), banking (e.g., Hannan and Berger, 1991), processed food (e.g., Ray, et al. 2006), manufacturing (e.g., Blinder, et al, 1998), and across a broad range of consumer product markets (e.g., Peltzman, 2000; Müller and Ray, 2007).
the Chicago metro area, operating 94 stores with a market share of 25 percent. In 1999, the US retail grocery sales reached $435 billion. Dominick’s, thus, represents a major class of the retail trade. Moreover, the sales of large supermarket chains constitute about 14 percent of the total retail sales of about $2.25 trillion. Retail sales account for about 9.3 percent of the GDP, and thus our data represent as much as 1.3 percent of the GDP, which seems substantial.

The data set consists of up to 400 weekly observations of retail prices in 27 product categories representing 30 percent of the chain’s revenue, from September 14, 1989 to May 8, 1997, although the length of individual series vary. The data contain the actual transaction prices paid at the cash register. Table 1 displays the list of the product categories that are included in the dataset along with some general descriptive statistics.

3. Empirical Findings

Before presenting the findings, consider a sample series from the data. Figure 1 displays the weekly prices of Heritage House frozen concentrate orange juice, 12oz, from Dominick’s Store No. 78. The series contain the following “small” price changes:

(a) 1¢: 9 positive (weeks 13, 237, 243, 245, 292, 300, 307, 311, and 359) and 6 negative (weeks 86, 228, 242, 275, 386, and 387);

(b) 2¢: 7 positive (weeks 248, 276, 281, 285, 315, 319, and 365) and 1 negative (week 287);

2 The findings for two categories, beer and cigarettes, are not discussed because the products included in these categories are highly regulated (Besley and Rosen, 1999, footnote 6). Their plots, however, are included in the supplementary appendix. See Barsky, et al. (2003) and Chevalier, et al. (2003) for more details about the data.

3 If the item was on sale or if the retailer’s coupon was used, then the data reflect that. The prices are set on a chain-wide basis but there is some variation across the stores. The analyses discussed in this paper, use the data available from all stores.
(c) **3¢**: 3 positive (weeks 254, 379, and 380) and 2 negative (weeks 203 and 353);

(d) **4¢**: 4 positive (weeks 23, 197, 318, and 354) and 1 negative (week 229); and

(e) **5¢**: 1 positive (week 280) and 1 negative (week 302).

Thus, in this series there are more positive than negative price changes up to 4¢. Below the paper studies the pattern of price changes for the full sample as well as for the individual categories, to determine whether this pattern holds more generally.

3.1 Findings for the Full Sample

Figure 2 shows the cross-category average frequency of positive and negative price changes. A robust regularity is immediately apparent: there are more “small” price increases than decreases which we call asymmetry “in the small.” The asymmetry lasts for price changes of up to about 10-15 cents, which is about 5 percent of the average retail supermarket price of about $2.50 (Levy, et al., 1997; Bergen, et al., 2008). Beyond that, the two lines crisscross each other and thus, the systematic asymmetry disappears.

Table 2 reports the category level asymmetry thresholds based on \(z \)-test results. Under the null, there should be equal number of price increases and decreases for each size of price change. We define an “asymmetry threshold” as the last point at which the asymmetry is supported statistically, that is, the last point at which the frequency of price increases exceeds the frequency of price decreases of the same absolute magnitude (\(z \geq 1.96 \)).

According to column 1 of Table 2, in four categories the asymmetry threshold falls below 5¢, and in two categories it exceeds 25¢. In most categories, however, the

4 Out statistical procedure allows for no asymmetry as well as for reverse asymmetry. The current analysis does not find any such case. Similarly, there are very few of them in later analyses (see Table 3 and the supplementary appendix).
3.2 Findings for Low-Inflation and Deflation Periods

The most immediate explanation for these findings might be inflation. During the sample period, the US was experiencing a moderate inflation, with an annual rate of between 5 percent (the first year of the sample) and 2.5 percent (last year of the sample). During inflation one expects to see more price increases than decreases (Ball and Mankiw, 1994). Therefore, it will be useful to ask whether or not the asymmetry holds when inflationary periods are excluded from the data. Given our large sample, such an analysis is indeed feasible.

To answer this question, two specific analyses were conducted. The first analysis includes only those observations during which the monthly PPI inflation does not exceed 0.1 percent, which is defined here as a low-inflation period. The second analysis includes only those observations in which the monthly PPI inflation rate is non-positive, which is defined here as a deflation-period.

For the low-inflation sample (the middle column in Table 2), the asymmetry

5 Considering price changes of up to 50¢ is sufficient given our focus on small price changes. Indeed, price changes of all sizes were calculated, and it was found that most price changes are indeed smaller than 50¢. The full sample contains a total of 10,298,995 price increases and 9,438,350 price decreases, and thus in total, there are more price increases than decreases. Further, 1¢, 2¢, 3¢, 4¢, and 5¢ increases account for 3.60%, 3.50%, 3.39%, 3.30%, and 3.20% of all price increases, respectively. In other words, 17.09% of the price increases are of 5¢ or less. In contrast, 1¢, 2¢, 3¢, 4¢, and 5¢ decreases account for 2.49%, 2.88%, 2.75%, 2.99%, and 2.88% of all price increases, respectively. In other words, 14.00% of price decreases are of 5¢ or less. Thus, the asymmetry holds at the aggregate level as well.

6 These findings cannot be explained by promotions or sales, as promotions likely generate more price decreases than increases, which is opposite to what is observed in our data. In addition, a sale-related temporary price reduction is usually followed by a price increase (Rotemberg 2005). Price promotions, therefore, cannot produce the observed asymmetry.

7 A counter-argument to this idea is that if the reason for the asymmetry was inflation, then one would see the asymmetry not only “in the small” but also “in the large.” The data, however, do not exhibit asymmetry “in the large.”

8 The frequency plots for the low inflation and the deflation periods are included in an appendix available upon request.
threshold is 8.2¢ on average. At the category level, the asymmetry holds in all but one category (bath soap), with some decrease in the thresholds, the majority falling between 2¢ and 20¢. In the deflation period sample (the last column in Table 2), the threshold is 6.2¢, on average. At the category level, asymmetry “in the small” is still found for all but two categories, bath soap and frozen entrees.

Thus, the asymmetry decreases from 11.3¢ in the full sample to 8.2¢ in the low inflation sample, and to 6.2¢ in the deflation sample, indicating that inflation accounts for about a half of the asymmetry. This suggests that inflation is indeed playing a role in the asymmetry. However, a sizeable fraction of the asymmetry still remains unexplained.

3.3 Asymmetry and Aggregate Inflation

In our data, deflation months are scattered throughout the sample period. To check further how asymmetry varies with inflation, therefore, the asymmetry threshold for each product category for each year was calculated (Table 3, columns A-G). This analysis revealed a negative relationship between asymmetry and inflation: over time, the asymmetry increased as inflation decreased (with PPI, \(t = 1.87, d.f. = 171, p = .03 \); with CPI, \(t = 3.15, d.f. = 171, p < .01 \); with CPI-Chicago, \(t = 2.04, d.f. = 171, p < .05 \)).

3.4 Asymmetry and Disaggregate Inflation

Aggregate inflation during the sample period was not too variable. Therefore, a more disaggregated inflation measure was constructed by generating a weekly index (WI) of Dominick’s category-level prices using the method of Chevalier, et al (2003).\(^9\)

From the WI two monthly (MI) and two annual (AI) indices were derived. The

\(^9\) See, Chevalier, et al., section II-E, pp. 22-23, for details.
monthly indices MI1 and MI2 were formed by setting the monthly index equal to the
weekly index value of the last week of the month, and to the average of the weekly
indices over the month, respectively. Similarly, the two annual indices AI1 and AI2 were
formed by setting the annual index equal to the weekly index of the last week of the year,
and to the average of the weekly indices over the year, respectively.

Using the five category-level price indices, the deflationary periods were
identified, and the asymmetry thresholds were calculated for each category.¹⁰ The five
new analyses generated a total of 135 (5x27) asymmetry thresholds. The findings, shown
in columns H-L of Table 3, confirm the presence of asymmetry in the small: 92%
(125/135) of the asymmetry thresholds are positive, while only 4% (5/135) are 0, and 4%
(5/135) are -1.¹¹ The asymmetry thresholds range between 7.11¢ and 8.15¢, with an
average of 7.72¢.

As an additional analysis, we run a linear cross-section regression of the category-
level asymmetry thresholds on the category-level inflation using each of the five
category-level inflation measures. The results suggest that there is no statistically
significant relationship between asymmetry and inflation at the category-level.¹²

4. Robustness

To check the robustness of this conclusion, five different tests of robustness were

¹⁰ The disaggregate price indices indicate greater variation in the inflation rates across categories in
comparison to the aggregate inflation. For example, in our sample the average annual category-level
inflation rate varies from -25.7 percent for analgesics to 21.9 percent for cookies. In contrast, the aggregate
annual inflation rate during the sample period varied between 2 percent to 5.5 percent, on average.
¹¹ The minus sign indicates a reverse asymmetry. The categories with 0 or reverse asymmetries are
analgesics, bath soap, shampoo, and toothbrush. For the remaining 23 categories, the asymmetry thresholds
are positive. The average asymmetry threshold across the 27 categories is positive in all five analyses (all
\(t\)-values > 7.11, all \(p\)-values < .001).
¹² For example, using MI2 to measure the category-level inflation, the estimates of the intercept and the
slope are 11.3 and -137.3 with \(t\)-values 6.8 and -0.7, respectively. Thus the estimated slope is negative but
statistically insignificant.
conducted. All confirm the conclusion that inflation at best offers a partial explanation for the asymmetry. These tests and the resulting findings are briefly discussed below. For more details, see the supplementary appendix.

4.1 Lagged Price Adjustment

The analysis so far assumed instantaneous price adjustment. To allow lagged adjustment, the analysis was repeated with 4-, 8-, 12-, and 16-week lags (Dutta, et al 2002; Bils and Klenow, 2004). The results suggest that the asymmetry holds for 25 of the 27 categories. In 99 of the 108 cases, i.e., in 92 percent of the cases, the thresholds are positive, averaging 6.6¢.

4.2 Alternative Measures of Inflation

The above analysis used the PPI. The analysis was repeated using CPI and CPI-Chicago. The latter is useful as it covers the area where most Dominick’s stores operate. The findings of these analyses suggest that there is asymmetry in all but two categories, with the average threshold of 6.9¢.

4.3 Alternative Measures of Inflation with Lagged Price Adjustment

The analysis of 4.2 was repeated with 4-, 8-, 12-, and 16-week adjustment lags. The findings of these analyses indicate that in 185 of the 216 cases, i.e., in 86% of the cases, the asymmetry remains, with the average threshold of 4.5¢.

4.4 Products for Which Prices Have Not Increased

As another test, only the products for which prices have not increased during the
sample period were considered. The findings indicate that in 23 of the 27 categories, i.e., in over 85 percent of the cases, asymmetry is observed.

4.5 First Year vs. the Last Year of the Sample Period

The 1989-97 period is characterized by a downward inflation trend. If inflation is causing the asymmetry, then the asymmetry should be stronger in the beginning of the sample period in comparison to the end of the sample period. Six product categories lack observations during the first year of the sample period. In 19 of the remaining 21 categories, i.e., in over 90 percent of the categories, a greater asymmetry is found in the last 12 months of the sample, averaging 9.0¢ in comparison to 0.6¢ in the first 12 months. A paired t-test comparing the asymmetry thresholds across the categories indicates statistical significance ($t_{20} = 4.799, p < .01$).

5. Possible Explanations

The analyses in sections 3 and 4 suggest that inflation cannot fully account for the observed asymmetry. Next, the paper explores whether or not the existing theories of asymmetric price adjustment can explain it. Although these theories can explain asymmetric price adjustment in general, it appears that they are unable to explain the specific form of asymmetry the paper documents. For example, the theory of capacity constraints emphasizes the asymmetry in the sellers’ ability to adjust inventory to price fluctuations. The theory, however, predicts that asymmetry should be observed for large price changes because small price changes are less likely to make capacity constraints

13 The average prices during the first and the last 4-weeks of the sample were compared. An 8-week window yielded similar results. In this comparison, the list prices are used in order to avoid any effect of sales on the results. In the asymmetry analysis, however, the actual prices are used to make the current results comparable with the previous results.
binding. This is the opposite of what is observed in our data. Similarly, theories of vertical channels and imperfect competition cannot explain asymmetry in the small because it is hard to see how market or the channel structure can vary between small and large price changes. Another possible explanation is menu cost under trend inflation. However, if the asymmetry were due to inflation and menu cost (Tsiddon, 1993), then one should not have seen asymmetry in periods of low-inflation, and even more so in periods of deflation. The asymmetry, therefore, is unlikely to be driven entirely by inflation.14

The consistency of our findings and the possible challenges to explain their patterns make them particularly intriguing. As a possible explanation, we hypothesize that that time-constrained consumers may be inattentive to small price changes.15, 16 If, for example, the cost of processing information on a price change exceeds the benefit, then shoppers might choose to ignore—and not react to—small price changes.17 The inattention creates along the demand curve around the current price a region where consumer sensitivity is low for both small price increases and decreases. This makes small price decreases less valuable to the retailer because the lower price does not trigger

14 If one considers a broader notion of price adjustment costs including managerial costs, then price adjustment costs could lead to asymmetry: the cost of price increase could be higher than the cost of price decrease. The reason might be consumer anger or fairness (Rotemberg 2005; Kahneman et al 1986), consumer goodwill loss (Okun, 1981; Kackmeister, 2007; Levy and Young, 2004), or search triggered by a price increase. This, however, predicts more price decreases than increases.

15 See, for example, Ball, Mankiw and Reis (2005), Adam (2007), Mankiw and Reis (2002), Sims (2003), Reis (2006a, 2006b), Woodford (2003), and Shugan (1980).

16 Another explanation might be asymmetry in small shocks (Ball and Mankiw, 1995). Prices may be reacting differently to shocks of different magnitudes, and in a world without inflation, asymmetric distribution of small shocks could lead to asymmetric price adjustment in the small. We thank the anonymous referee for suggesting this idea.

17 A recent news report offers anecdotal evidence: “The cost of General Mills cereals such as Wheaties, Cheerios, and Total is increasing an average of 2%. The price jump averages out to roughly 6 or 7¢ a box for cereals such as Chex, Total Raisin Bran ... which typically cost around $3 in the Minneapolis area, ... John French, 30, doubted he would even notice the higher prices for cereal on his next grocery trip. ‘A few cents? Naw, that’s no big deal,’ said French, of Plymouth, MN” (our emphasis). Source: Associated Press, June 2, 2001, “General Mills Hikes Prices.”
the consumer’s response. A small price increase, however, is valuable to the retailer as
the consumer will not reduce her purchases. Thus, the retailer has incentive to make
more frequent small price increases than decreases. Large price changes, however,
trigger consumer reaction, and therefore the retailer has no incentive to make asymmetric
large price changes.18, 19

The idea that there exists a region of inattention around the current price along the
demand curve is consistent with the findings of Fibich, et al. (2007) and Kalwani and
Yim (1992), who show that promotional price changes must exceed a certain threshold to
produce any effect. It is consistent also with the literature on “just noticeable difference”
(Monroe, 1970) and “price indifference bands” (Kalyanaram and Little, 1994). For
example, according to McKinsey, the price indifference band is 17 percent for health-
and-beauty products and 10 percent for engineered industrial components. Consistent
with this, the common managerial intuition is that price reductions of less than 15% do
not attract enough customers to a sale (Della, et al 1980; Gupta and Cooper 1992).20

6. Conclusion

The paper finds asymmetry for price changes of up to about 10¢. In other words,

18 In a world inhabited by inattentive consumers, small price decreases are still possible. First, small price
changes may be induced by competitive factors, such as price guarantees and price matches (Levy, et. al.,
1997 and 1998), as well as by changes in supply conditions (Dutta, et. al., 1999 and 2002; Levy, et al.,
2002) and demand conditions (Okun, 1981; Warner and Barsky, 1995; Chevalier, et. al., 2003). Second,
many food items have expiration date, and they may go on sale as the expiration date approaches. And
third, managers may be following simple pricing rules, such as “reduce all prices in a given category by
2%,” which could lead to small price reductions. See also Lach and Tsiddon (1992, 1996) and Rotemberg
(2008).

19 There is a limit on the surplus a retailer can extract from consumers. For example, if information-
processing is costly, the customer may rely on the price for which she has last optimized. The retailer then
can raise its price only to the upper bound of the region of inattention. Any additional increase beyond that
will push the price far enough from the last optimization price to trigger a re-optimization. Thus, indefinite
continuous small price increases are not feasible.

20 The possibility that consumers may be inattentive to small price changes is consistent with the
observation that retailers alert the public about promotions by posting sale signs, to ensure that shoppers
notice the price discounts.
the paper finds a downward price rigidity "in the small." This type of asymmetry has not been reported in the literature, often flying under the radar screen. For example, the data plots presented by Álvarez and Hernando (2004) and Baudry, et al. (2004) clearly indicate asymmetry “in the small” although the authors do not discuss it. These suggest that asymmetry in the small might be more prevalent than people think.21

Our findings suggest that inflation can explain some of the asymmetry the paper documents, which is interesting because a long-standing question in the New-Keynesian macroeconomic theory is whether or not individual price setters respond to monetary policy or more generally to macro variables. The finding that some of the asymmetry in the small that the paper documents using product- and store-level individual transaction price data is explained by inflation, provides evidence that price-setters may be paying attention and reacting to monetary/macro developments.

There still remains a substantial portion of the asymmetry unexplained, even after accounting for inflation. While the existing theories of asymmetric pricing adjustment cannot explain the remaining asymmetry, it seems consistent with consumer inattention. To the extent that consumers’ information processing costs depend on their opportunity costs, their ability to carry out the necessary calculations, their experience with doing this type of calculations and the amount of the calculations required, the asymmetry could vary with the level of customer attentiveness over shopping intensity (e.g., holiday vs. non-holiday periods) and across products and product categories. Therefore, studying settings in which the extent of inattention may vary will offer a more direct test of the empirical plausibility of the rational inattention explanation. Future research can

21 Indeed, in his discussants’ comments on this study, Cecchetti (2004) demonstrated that in Europe the phenomenon of asymmetric price adjustment in the small is widespread and is not limited to food store prices. See also Hoffmann and Kurz-Kim (2008).
incorporate models of reference point shift (e.g., Chen and Rao 2002) to study the
dynamics of information processing costs and their impact on firms’ pricing behavior.

Our findings suggest that markets might respond differently to small and large
differences, a notion consistent with the finding that prices react differently to small and
large cost shocks (Dutta, et al. 2002), and with recent field work that studies firms’
conduct when they face decisions about small versus large price changes.22

Based on our findings, we speculate that asymmetry in the small will be present in
settings where low-priced consumer goods are sold (Target, Wal-Mart, etc.). It is unclear,
however, how generalizable our findings are to other setting. It is known that in some
markets, such as in financial and in business-to-business markets, attention is critical
because transactions often involve large quantities of the same asset. Similarly, in
markets for big-ticket items people might be more attentive because of the large
expenditures (Bell, et al., 1998). Even then, however, buyers might ignore some
rightmost digits (Lee et. al., 2006). Thus, a car buyer may focus on "fourteen thousand
eight hundred" dollars when the actual price is $14,889, creating some room for
asymmetric price adjustment in the small. In future work, therefore, it will be valuable to
study other data sets, products, and markets.

22 See, for example, Zbaracki, et al. (2004, 2006). See also Cecchetti (1986), Rotemberg (1987), Basu
(1995), Danziger (1999), Ball and Romer (2003), Konieczny and Skrzypacz (2005), and Fisher and
References

1 American Economic Review 81, 938-45.
2 Hoffmann, J., Kurz-Kim, J.R., 2008. Price adjustment under the microscope: Germany in a
3 period of low inflation. Managerial and Decision Economics, forthcoming (special issue
4 on Price Setting and Price Adjustment in Some European Union Countries).
5 Kackmeister, A. 2007. Yesterday's bad times are today's good old times: retail price changes
6 are more frequent today than in the 1890s. Journal of Money, Credit and Banking 39,
8 Kahneman, D., et al., 1986. Fairness as a constraint on profit seeking: Entitlements in the
10 Kalwani, Yim, 1992. Consumer price and promotion expectations: An experimental
16 Lach, S., Tsiddon, D., 2007. Small price changes and menu costs. Managerial and
17 Decision Economics 28, 649-656.
21 Levy, D., et al., 1998, Price adjustment at multiproduct retailers. Managerial and
22 Decision Economics 19, February, 81–120.
24 micro-level data. Journal of Money, Credit and Banking 34, 197-220.
25 Levy, D., Young, A., 2004. The real thing: Nominal price rigidity of the nickel Coke,
27 Mankiw, N. G., Reis, R., 2002. Sticky decisions vs. sticky prices: A proposal to replace
31 466-502.
33 Science 25, 131-154.
37 Rotemberg, J., 2005. Customer anger at price increases, changes in the frequency of price
38 adjustment and monetary policy. Journal of Monetary Economics 52, 829-852.
41 Sheshinski, E., Weiss, Y., 1977. Inflation and costs of price adjustment. Review of
43 Sheshinski, E, Weiss, Y, 1992. Staggered and synchronized price policies under inflation:

Figure 1. Price of frozen concentrate orange juice, Heritage House, 12oz (UPC = 3828190029, Store 78), September 14, 1989-May 8, 1997

Notes:
1. Week 1 = Week of September 14, 1989, and Week 399 = Week of May 8, 1997
2. There are 6 missing observations in the series.
3. The series contain many small price changes. Some of them are indicated by the circles.
Figure 2. Average Frequency of Positive and Negative Price Changes,
All 29 Categories
Table 1. Descriptive statistics of Dominick’s data

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Observations</th>
<th>Proportion of the Total</th>
<th>Number of Products</th>
<th>Number of Stores</th>
<th>Mean Price</th>
<th>Std. Dev.</th>
<th>Min. Price</th>
<th>Max. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics</td>
<td>3,059,922</td>
<td>0.0310</td>
<td>638</td>
<td>93</td>
<td>$5.18</td>
<td>$2.36</td>
<td>$0.47</td>
<td>$23.69</td>
</tr>
<tr>
<td>Bath Soap</td>
<td>418,097</td>
<td>0.0042</td>
<td>579</td>
<td>93</td>
<td>$3.16</td>
<td>$1.60</td>
<td>$0.47</td>
<td>$18.99</td>
</tr>
<tr>
<td>Bathroom Tissue</td>
<td>1,156,481</td>
<td>0.0117</td>
<td>127</td>
<td>93</td>
<td>$2.10</td>
<td>$1.68</td>
<td>$0.25</td>
<td>$11.99</td>
</tr>
<tr>
<td>Beer</td>
<td>1,970,266</td>
<td>0.0200</td>
<td>787</td>
<td>89</td>
<td>$5.69</td>
<td>$2.70</td>
<td>$0.99</td>
<td>$26.99</td>
</tr>
<tr>
<td>Bottled Juice</td>
<td>4,324,595</td>
<td>0.0438</td>
<td>506</td>
<td>93</td>
<td>$2.24</td>
<td>$0.97</td>
<td>$0.32</td>
<td>$8.00</td>
</tr>
<tr>
<td>Canned Soup</td>
<td>5,549,149</td>
<td>0.0562</td>
<td>445</td>
<td>93</td>
<td>$1.13</td>
<td>$0.49</td>
<td>$0.23</td>
<td>$5.00</td>
</tr>
<tr>
<td>Canned Tuna</td>
<td>2,403,151</td>
<td>0.0244</td>
<td>278</td>
<td>93</td>
<td>$1.80</td>
<td>$1.07</td>
<td>$0.22</td>
<td>$12.89</td>
</tr>
<tr>
<td>Cereals</td>
<td>4,747,889</td>
<td>0.0481</td>
<td>489</td>
<td>93</td>
<td>$3.12</td>
<td>$0.76</td>
<td>$0.25</td>
<td>$7.49</td>
</tr>
<tr>
<td>Cheeses</td>
<td>7,571,355</td>
<td>0.0767</td>
<td>657</td>
<td>93</td>
<td>$2.42</td>
<td>$1.12</td>
<td>$0.10</td>
<td>$16.19</td>
</tr>
<tr>
<td>Cigarettes</td>
<td>1,810,614</td>
<td>0.0183</td>
<td>793</td>
<td>93</td>
<td>$7.69</td>
<td>$7.90</td>
<td>$0.59</td>
<td>$25.65</td>
</tr>
<tr>
<td>Cookies</td>
<td>7,634,434</td>
<td>0.0774</td>
<td>1,124</td>
<td>93</td>
<td>$2.10</td>
<td>$0.63</td>
<td>$0.25</td>
<td>$8.79</td>
</tr>
<tr>
<td>Crackers</td>
<td>2,245,305</td>
<td>0.0228</td>
<td>330</td>
<td>93</td>
<td>$2.01</td>
<td>$0.57</td>
<td>$0.25</td>
<td>$6.85</td>
</tr>
<tr>
<td>Dish Detergent</td>
<td>2,183,013</td>
<td>0.0221</td>
<td>287</td>
<td>93</td>
<td>$2.34</td>
<td>$0.90</td>
<td>$0.39</td>
<td>$7.00</td>
</tr>
<tr>
<td>Fabric Softeners</td>
<td>2,295,534</td>
<td>0.0233</td>
<td>318</td>
<td>93</td>
<td>$2.82</td>
<td>$1.45</td>
<td>$0.10</td>
<td>$9.99</td>
</tr>
<tr>
<td>Front-End-Candies</td>
<td>3,952,470</td>
<td>0.0400</td>
<td>503</td>
<td>93</td>
<td>$0.61</td>
<td>$0.24</td>
<td>$0.01</td>
<td>$6.99</td>
</tr>
<tr>
<td>Frozen Dinners</td>
<td>1,654,051</td>
<td>0.0168</td>
<td>266</td>
<td>93</td>
<td>$2.37</td>
<td>$0.89</td>
<td>$0.25</td>
<td>$9.99</td>
</tr>
<tr>
<td>Frozen Entrees</td>
<td>7,231,871</td>
<td>0.0733</td>
<td>898</td>
<td>93</td>
<td>$2.33</td>
<td>$1.06</td>
<td>$0.25</td>
<td>$15.99</td>
</tr>
<tr>
<td>Frozen Juices</td>
<td>2,373,168</td>
<td>0.0240</td>
<td>175</td>
<td>93</td>
<td>$1.39</td>
<td>$0.45</td>
<td>$0.22</td>
<td>$6.57</td>
</tr>
<tr>
<td>Grooming Products</td>
<td>4,065,691</td>
<td>0.0412</td>
<td>1,381</td>
<td>93</td>
<td>$2.94</td>
<td>$1.37</td>
<td>$0.49</td>
<td>$11.29</td>
</tr>
<tr>
<td>Laundry Detergents</td>
<td>3,302,753</td>
<td>0.0335</td>
<td>581</td>
<td>93</td>
<td>$5.61</td>
<td>$3.22</td>
<td>$0.25</td>
<td>$24.49</td>
</tr>
<tr>
<td>Oatmeal</td>
<td>981,106</td>
<td>0.0099</td>
<td>96</td>
<td>93</td>
<td>$2.65</td>
<td>$0.66</td>
<td>$0.49</td>
<td>$5.00</td>
</tr>
<tr>
<td>Paper Towels</td>
<td>948,550</td>
<td>0.0096</td>
<td>163</td>
<td>93</td>
<td>$1.50</td>
<td>$1.41</td>
<td>$0.31</td>
<td>$13.99</td>
</tr>
<tr>
<td>Refrigerated Juices</td>
<td>2,176,518</td>
<td>0.0221</td>
<td>225</td>
<td>93</td>
<td>$2.24</td>
<td>$0.91</td>
<td>$0.39</td>
<td>$7.05</td>
</tr>
<tr>
<td>Shampoos</td>
<td>4,676,731</td>
<td>0.0474</td>
<td>2,930</td>
<td>93</td>
<td>$2.95</td>
<td>$1.79</td>
<td>$0.27</td>
<td>$29.99</td>
</tr>
<tr>
<td>Snack Crackers</td>
<td>3,509,158</td>
<td>0.0356</td>
<td>420</td>
<td>93</td>
<td>$2.18</td>
<td>$0.57</td>
<td>$0.10</td>
<td>$8.00</td>
</tr>
<tr>
<td>Soaps</td>
<td>1,834,040</td>
<td>0.0186</td>
<td>334</td>
<td>93</td>
<td>$2.51</td>
<td>$1.48</td>
<td>$0.10</td>
<td>$10.99</td>
</tr>
<tr>
<td>Soft Drinks</td>
<td>10,547,266</td>
<td>0.1069</td>
<td>1,608</td>
<td>93</td>
<td>$2.34</td>
<td>$1.89</td>
<td>$0.10</td>
<td>$26.02</td>
</tr>
<tr>
<td>Toothbrushes</td>
<td>1,852,487</td>
<td>0.0188</td>
<td>491</td>
<td>93</td>
<td>$2.18</td>
<td>$0.85</td>
<td>$0.39</td>
<td>$9.99</td>
</tr>
<tr>
<td>Toothpastes</td>
<td>2,997,748</td>
<td>0.0304</td>
<td>608</td>
<td>93</td>
<td>$2.43</td>
<td>$0.89</td>
<td>$0.31</td>
<td>$10.99</td>
</tr>
</tbody>
</table>

Total 98,691,750 1.0000 18,037 93

Notes:

1. The data are weekly.
2. The figures in the table are based on all price data of Dominick’s in its 93 stores for 400 weeks from September 14, 1989 to May 8, 1997.
3. The data are available at: http://gsbwww.uchicago.edu/kilts/research/db/dominicks/
Table 2. Asymmetry thresholds in cents based on PPI-measure of price level

<table>
<thead>
<tr>
<th>Category</th>
<th>Full Sample</th>
<th>Low-Inflation Sample</th>
<th>Deflation Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Bath Soap</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bathroom Tissues</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Bottled Juices</td>
<td>12</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Canned Soup</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Canned Tuna</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cereals</td>
<td>29</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Cheeses</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Cookies</td>
<td>11</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Crackers</td>
<td>10</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Dish Detergent</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Fabric Softeners</td>
<td>5</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Front-end-candies</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Frozen Dinners</td>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Frozen Entrees</td>
<td>20</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Frozen Juices</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Grooming Products</td>
<td>20</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Laundry Detergents</td>
<td>16</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Oatmeal</td>
<td>25</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Paper Towels</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Refrigerated Juices</td>
<td>15</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Shampoos</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Snack Crackers</td>
<td>11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Soaps</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Soft Drinks</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Tooth Brushes</td>
<td>20</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tooth Pastes</td>
<td>18</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Average</td>
<td>11.3</td>
<td>8.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Notes:

1. PPI = Producer Price Index.
2. Low inflation sample includes the periods during which the monthly change in the PPI does not exceed 0.1 percent.
3. Deflation sample includes the periods during which the monthly change in the PPI does not exceed 0 percent.
4. The figures reported in the table are the cutoff points of what might constitute a “small” price change for each category. The cutoff point is the last point at which the asymmetry is supported statistically ($z \geq 1.96$). Thus, for example, in the Analgesics category, when the full sample is used, there is asymmetry (more frequent price increases than decreases) for price changes of up to 30 cents.
5. If the figure is 0, it means that there is no asymmetry.
Table 3. Relationship between asymmetry and inflation, asymmetry thresholds in cents

<table>
<thead>
<tr>
<th>Categories</th>
<th>Asymmetry and Aggregate Inflation</th>
<th>Asymmetry and Disaggregate Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics</td>
<td>(1)</td>
<td>7</td>
</tr>
<tr>
<td>Bath Soap</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bathroom Tissues</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Bottled Juices</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Canned Soup</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Canned Tuna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cereals</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Cheeses</td>
<td>(1)</td>
<td>5</td>
</tr>
<tr>
<td>Cookies</td>
<td>4</td>
<td>(1)</td>
</tr>
<tr>
<td>Crackers</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dish Detergent</td>
<td>(3)</td>
<td>2</td>
</tr>
<tr>
<td>Fabric Softeners</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Front-end-candies</td>
<td>(1)</td>
<td>1</td>
</tr>
<tr>
<td>Frozen Dinners</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frozen Entrees</td>
<td>(1)</td>
<td>0</td>
</tr>
<tr>
<td>Frozen Juices</td>
<td>0</td>
<td>(2)</td>
</tr>
<tr>
<td>Grooming Prod.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laundry Detergent</td>
<td>(4)</td>
<td>3</td>
</tr>
<tr>
<td>Oatmeal</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Paper Towels</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Refrigerated Juices</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Shampoos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Snack Crackers</td>
<td>(2)</td>
<td>0</td>
</tr>
<tr>
<td>Soaps</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Soft Drinks</td>
<td>1</td>
<td>(1)</td>
</tr>
<tr>
<td>Tooth Brushes</td>
<td>(1)</td>
<td>8</td>
</tr>
<tr>
<td>Tooth Pastes</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Average
- Asymmetry and Aggregate Inflation: 0.8, 3.8, 3.9, 7.3, 3.7, 3.9, 8.1
- Asymmetry and Disaggregate Inflation: 7.70, 7.59, 7.11, 8.04, 8.15

Notes:
2. H – Weekly Index; I – Monthly Index 1; J – Annual Index 1; K – Monthly Index 2; L – Annual Index 2.
3. The figures in the table are the estimated asymmetry thresholds.
4. The figures in parentheses indicate a reverse asymmetry, and 0 means that there is no asymmetry.
Supplementary Appendix

1. Table R1 reports the results of five robustness tests, as discussed in the paper, in section 4.

2. In Figure R1 we present the cross-category average frequency of positive and negative price changes in cents for the low/zero-inflation period sample.

3. In Figures R1.1a–R1.1c we present the frequency of positive and negative price changes in cents by categories for the low/zero-inflation period sample.

4. In Figure R2 we present the cross-category average frequency of positive and negative price changes in cents for the deflation period sample.

5. In Figures R2.1a–R2.1c we present the frequency of positive and negative price changes in cents by categories for the deflation period sample.
Table R1. Robustness tests

<table>
<thead>
<tr>
<th>Categories</th>
<th>PPI No Lag</th>
<th>PPI 4W</th>
<th>PPI 8W</th>
<th>PPI 12W</th>
<th>PPI 16W</th>
<th>CPI No Lag</th>
<th>CPI 4W</th>
<th>CPI 8W</th>
<th>CPI 12W</th>
<th>CPI 16W</th>
<th>CPI-Chicago No Lag</th>
<th>CPI-Chicago 4W</th>
<th>CPI-Chicago 8W</th>
<th>CPI-Chicago 12W</th>
<th>CPI-Chicago 16W</th>
<th>F4W≥L4W</th>
<th>F12M</th>
<th>L12M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>Analgesics</td>
<td>30</td>
<td>12</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>(5)</td>
<td>0</td>
<td>7</td>
<td>(1)</td>
<td>(1)</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Bath Soap</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bathroom Tissues</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Bottled Juices</td>
<td>12</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>(7)</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>16</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Canned Soup</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>18</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>14</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Canned Tuna</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cereals</td>
<td>29</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>28</td>
<td>28</td>
<td>0</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>29</td>
<td>29</td>
<td>(1)</td>
<td>29</td>
<td>14</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Cheeses</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>(1)</td>
<td>22</td>
</tr>
<tr>
<td>Cookies</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Crackers</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Dish Detergent</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>(4)</td>
<td>15</td>
</tr>
<tr>
<td>Fabric Softeners</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Front-end-candies</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Frozen Dinners</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Frozen Entrees</td>
<td>20</td>
<td>4</td>
<td>20</td>
<td>10</td>
<td>19</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>(1)</td>
<td>4</td>
<td>14</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Frozen Juices</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>14</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Grooming Prod.</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>14</td>
<td>1</td>
<td>23</td>
<td>5</td>
<td>12</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Laundry Detergent</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>13</td>
<td>20</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Oatmeal</td>
<td>25</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>17</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Paper Towels</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerated Juices</td>
<td>15</td>
<td>6</td>
<td>18</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Shampoos</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>1 (1)</td>
<td>0</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>(1)</td>
<td>(1)</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Snack Crackers</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(1)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Soaps</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft Drinks</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>(1)</td>
</tr>
<tr>
<td>Tooth Brushes</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>(1)</td>
<td>0</td>
<td>(1)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(3)</td>
<td>1</td>
</tr>
<tr>
<td>Tooth Pastes</td>
<td>18</td>
<td>6</td>
<td>7</td>
<td>20</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Average

| 11.3 | 7.3 | 6.1 | 6.7 | 6.2 | 6.4 | 3.8 | 3.8 | 3.9 | 5.2 | 7.4 | 4.9 | 5.9 | 4.0 | 4.7 | 3.9 | 0.6 | 9.0 |

Notes:

1. The figures in the table are asymmetry thresholds.
2. PPI – Producer Price Index, CPI – Consumer Price Index
3. A – PPI without lags; B – PPI 4 week lag; C – PPI 8 week lag; D – PPI 12 week lag; E – PPI 16 week lag
4. F – CPI without lags; G – CPI 4 week lag; H – CPI 8 week lag; I – CPI 12 week lag; J – CPI 16 week lag
5. K – CPI-Chicago without lags; L – CPI-Chicago 4 week lag; M – CPI-Chicago 8 week lag; N – CPI-Chicago 12 week lag; O – CPI-Chicago 16 week lag
6. P – Products for which the first 4 week prices are greater than or equal to the last 4 week prices;
7. Q – First 12 months of the sample period; R – Last 12 months of the sample period.
8. The figures in parentheses indicate a reverse asymmetry. A zero-entry means that there is no asymmetry.
Figure R1. Average Frequency of Positive and Negative Price Changes
All 29 Categories, Low/Zero Inflation Period
Figure R1.1a. Frequency of Positive and Negative Retail Price Changes in Cents by Category,
Low/Zero Inflation Period
Figure R1.1b. Frequency of Positive and Negative Retail Price Changes in Cents by Category, Low/Zero Inflation Period
Figure R1.1c. Frequency of Positive and Negative Retail Price Changes in Cents by Category, Low/Zero Inflation Period
Figure R2. Average Frequency of Positive and Negative Price Changes
All 29 Categories, Deflation Period
Figure R2.1a. Frequency of Positive and Negative Retail Price Changes in Cents by Category, Deflation Period
Figure R2.1b. Frequency of Positive and Negative Retail Price Changes in Cents by Category, Deflation Period
Figure R2.1c. Frequency of Positive and Negative Retail Price Changes in Cents by Category, Deflation Period